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vector; in this way, the two solutions merged satis­
factorily into each other and did not give rise to spurious 
discontinuities in derived quantities, such as the rate 
constant or the entropy, in the region around 1O-6 sec. 

We end with a few remarks on the eigenvalues of this 
system of equations and the problem of the strict main­
tenance of particle conservation. The matrix H'(O 
(corresponding to eq 20) has (n + 2) eigenvalues (D'0 

to £>'(„+!)), one of which ( D ' ( „ + D ) is necessarily zero by 
virtue of the right-most column of (26) being zero. It 
is usually assumed that the zero eigenvalue is needed to 
confer conservation of particles on the system. How­
ever, in our formulation this is not so; D\n+1) is zero 
only because state (n + 1) is inaccessible by a direct 
ump from any of the bound states; all transitions from 
i -*• (n + 1) have to go via the state n. To give an ex­
treme example, suppose that eq 8-11 were interleaved 
by equations representing transitions to nonexistent 
states, all having zero probability for transition to real 
states. The master equation would then have a zero 
eigenvalue for each such state introduced; these zeros 
do not constitute a sufficient criterion to guarantee con-

A. Dissociation 
1. The Model. The hypothetical experiment simu­

lated in this calculation is the following. A mixture con­
sisting of 3.5 X 1016 molecules/cc OfH2 diluted in 3.5 X 
1019 atoms/cc of He is heated instantaneously by a shock 
wave from an initial temperature of O0K to a tempera­
ture T0' near 20000K. We focus our attention on a 
particular volume V of the gas and assume that, after 
the initial heating process, there is no transfer of matter 
or energy in or out of this volume. The system is 
therefore closed, and the reaction occurs at constant 
volume (the real process takes place at constant en­
thalpy, but the error introduced here is minimal2). It 
is assumed that one can imagine a time t = 0 at which 
the translational and rotational temperature of the gas 
is T0' but the vibrational temperature is still 00K. In 
the preceding paper,3 we considered formally the more 

(1) Research supported by the Defence Research Board of Canada 
(Grant No. 9550-35) and the National Research Council of Canada. 

(2) C. T. Hsu and L. D. McMillen, Phys. Fluids, 11, 2148 (1968). 
(3) Part I: V. A. LoDato, D. L. S. McElwain, and H. O. Pritchard, 

servation of X particles in the normal sense, and we call 
them inaccessibility zeros. Furthermore, it is readily 
seen that eq 20a is stochastic inform, so that Dn of H(O 
is also zero—but eq 20a does not conserve particles 
until the additional normalization of 1(f) is invoked 
through (12a)! Thus, we conclude that meticulous 
consideration has to be given to the problem of particle 
conservation; otherwise derived quantities like the rate 
constant or the rate of entropy production are quite 
meaningless. The remaining eigenvalues of the system 
(D0 to D ( „ _ D ) are all negative and well-spaced, and all 
except one, i.e., D0 to D(n_2>, have absolute magnitudes 
in the range 10u-109 sec - 1 with negligible time depen­
dence; the last one, D(n_i), however, is quite time de­
pendent, and rises from about —0.014 sec -1 at short 
times, through about —0.1 sec -1 at 1 % reaction to 
about —3.5 sec -1 at equilibrium. Its behavior in re­
combination is complementary; near-complete dis­
sociation, D ( „ _ D , has a value of about —430 sec -1, pass­
ing through about —140 sec -1 at 65% recombined, 
and, of course, approaching —3.5 sec -1 as equilibrium 
is reached. 

general case where the rotational degrees of freedom 
would still be those appropriate to 00K at t = 0, but 
this still presents too formidable a computing problem. 
The hydrogen molecule has 301 bound rotation-vibra­
tion levels.4 Thus one would have to solve a master 
equation of order 302 which is beyond our present ca­
pabilities; one would also need to know approximate 
transition probabilities among all these levels, and, as 
yet, we have no firm feeling for the way in which prob­
abilities involving simultaneous changes of v and J will 
depend on (Av + AJ) and T. However, since the trans-
lational-rotational relaxation is very much more rapid 
than translational-vibrational relaxation,5 even for H2, 
a meaningful calculation can still be done by assuming 
that the translational and rotational degrees of freedom 
are always in equilibrium with each other, and simply 

91, 7688 (1969). Equations in this paper are referred to by a I pre­
ceding the equation number. 

(4) T. G. Waech and R. B. Bernstein, / . Chem. Phys,, 46, 4905 
(1967). 

(5) H. O. Pritchard in "Transfer and Storage of Energy," Vol. 2, 
John Wiley & Sons, Inc., London, 1969, pp 368-389. 
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Table I. The Hydrogen Molecule Vibrational Energy Levels and 
Equilibrium Population Distribution Function for N = 3.5 X 10 6 

molecules/cc at 200O0K 

State i 

v = 0 
v = 1 
v = 2 
v = 3 
v = 4 
v = 5 
D = 6 
v = 7 
D = 8 
D = 9 
D = 10 
C = 11 
u = 12 
v = 13 
u = 14 
Pairs 
Atoms 

— 6,-, c m - 1 

36,117.42 
31,955.35 
28,028.56 
24,332.02 
20,863.18 
17,620.89 
14,606.37 
11,823.57 
9,279.92 
6,986.57 
4,959.98 
3,223.02 
1,807.61 

758.72 
138.71 

Xi = fii/N 

9.416 X 10"1 

4.715 X 10-2 

2.797 X 10-3 

1.958 X 10-" 
1.614 X 10"6 

1.567 X 10-6 

1.791 X 10-' 
2.420 X 10-8 

3.882 X 10~9 

7.457 X 10-10 

1.735 X 10-10 

4.974 X 1 0 - " 
1.797 X 10"" 
8.449 X 10"12 

5.409 X 10- ' 2 

5.309 X 10"9 

8.252 X IO- 3 0 

" The fraction of molecules dissociated; cf. eq 1(12). 

concentrating on the vibrational and chemical aspects 
of the relaxation process. Of course, one loses some of 
the fine details peculiar to the H2 problem, those asso­
ciated with nuclear-spin statistics, and one avoids some 
of the complications arising from high rotational excita­
tion, i.e., the metastable states, tunneling, and centrif­
ugal dissociation. Nevertheless, the calculations we 
have performed still reproduce, in our opinion, the 
main features of the dissociation process for a general 
diatomic molecule under highly dilute conditions. 

The vibrational energy levels in H2, which are taken 
from Poll and Karl,6 are listed in Table I together with 
the population distribution function xt = H1/N for the 
temperature 20000K. The fractional concentration of 
dissociated molecules £(„+« is derived from the equi­
librium constant K = 9.612 X 1012 (molecules/cc) for 
the dissociation reaction,7 and the fractional concentra­
tion of latent pairs icn follows from the equilibrium con­
stant X = 5.569 X 10~22 (cc/pair) calculated by Rush 
and Pritchard8 [cf. eq 1(3)]. Table II lists the assumed 
set of transition probabilities used in this calculation. 
With the exception of a more realistic choice for the 
Wnt, they are like those used in our earlier work,8'' 
having been estimated crudely by perturbation meth­
ods;10 however, since diatomics in general all exhibit 
the same kind of behavior in shock dissociations,8 

clearly this behavior cannot depend too critically on the 
individual transition probabilities, and it seems likely 
that if the chosen set embodies the right kind of inter­
relationships, the correct kinetic patterns should be re­
produced. l l To begin the calculation, the upper hal;" 
of the Pv matrix was read into the computer with two • 

(6) J. D. Poll and G. Karl, Can. J. Phys., 44, 1467 (1966). 
(7) "JANAF Thermochemical Tables," The Dow Chemical Co., 

Midland, Mich., 1965. 
(8) D. G. Rush and H. O. Pritchard, Eleventh Symposium (Inter­

national) on Combustion, Berkeley, Calif., 1967, p 13. 
(9) D. G. Rush, Ph.D. Thesis, University of Manchester, Manchester, 

England, 1964. 
(10) H. O. Pritchard, / . Phys. Chem., 65, 504 (1961). 
(11) We have carried out auxiliary calculations in which some of thi; 

probabilities were varied from those in Table II by as much as 10±4; 
while the actual rates of relaxation were affected, and the departures 
from equilibrium shown in Table III were more or less exaggerated, 
the general qualitative pattern exhibited in Table III persisted. Thus, 
our contention that the nature of the relaxation is dominated by statisti­
cal mechanics rather than the probabilities seems to be reasonably sup­
ported, 

decimal place precision and multiplied by [He]Z =5 .15 
X 1010 collisions per H2 molecule per second to give the 
[M]WiJ of eq 1(18). The lower half of [M]Wi} was then 
calculated from the detailed-balance relations 1(14) to 
double-length (16-decimal place) accuracy, and the di­
agonal elements of A0o and An were then calculated in 
double length using eq 1(18). It was found necessary 
to maintain this strict adherence to detailed balancing 
and conservation [eq 1(19)]; otherwise the solutions in­
evitably failed to converge in the interesting time range 
or were unacceptable for other reasons. 

A further minor approximation is introduced at this 
point. The whole of the data in Tables I and II and the 
A matrices derived therefrom correspond to a tempera­
ture of exactly 2000°K; with the mixture we have 
chosen, T0' differs from this by about 0.50K, and the 
translational-rotational temperature of the gas falls by 
this amount as the reaction proceeds. We have as­
sumed that over this range of 0.50K, the temperature 
dependence of Z, X, and all the Wtj can be neglected; 
for less dilute mixtures, expanding flows, and recom­
bination at low temperatures or when radiation is im­
portant, this approximation [eq I(22a) and 1(28)] would 
be less acceptable. 

2. The Relaxation. The results of these calculations 
are shown in the form of £(0 as a function of t in Table 
III; this is divided into two sections (reflecting a differ­
ence in the method of calculation), Table 111(a) relating 
to what is essentially the vibrational part of the relaxa­
tion and Table 111(b) showing the chemical part of the 
process. In the latter part of the calculation, no diffi­
culty was experienced in obtaining convergent solutions 
(even for times well in excess of those shown in Table 
III), and if the trial value of %n(i) was of the right order 
of magnitude, usually some 6-20 cycles were needed, 
each cycle took about 10 sec on an IBM 360/50. 

The principal features of the relaxation are a very 
rapid equilibration among the first ten vibrational en­
ergy levels, followed by a relatively slow approach to the 
final equilibrium. In experimental studies, it is usually 
assumed12'18 that the vibrational levels relax more or 
less completely before dissociation commences; since 
the populations of levels v = 10-14 only amount alto­
gether to about 10-10 of the molecules present, the va­
lidity of this assumption is amply confirmed. Addi­
tionally, in a real shock wave, which is not instanta­
neous, this process seems to take about 1 jusec.14 Once 
the transient period16 is over, levels v = 0-9 remain 
essentially in equilibrium with each other, with pop­
ulations approaching their equilibrium values mo-
notonically from above; on the other hand, levels v = 
10-14 and the continuum are always underpopulated, 
approaching their final equilibrium populations from 
below. Thus, with this particular set of assumed prob­
abilities, the idea of a bottleneck10'11 around v = 9 or 
10 seems well established. It is also apparent that the 
populations of levels v = 10-14 execute one small os­
cillation in the early stages of the reaction, before the 
back-reaction becomes important, and during this pe­
riod the main feature of the process appears to be that 
molecules dissociate from these levels just as quickly as 

(12) H. O. Pritchard, Quart. Rev. (London), 14, 46 (1960). 
(13) J. P. Appleton, M. Steinberg, and D. J. Liquornik, J. Chem. 

Phys., 48, 599 (1968). 
(14) I. R. Hurle, ref 8, p 827. 
(15) B. Widom, Science, 148, 1555 (1965). 
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they can be supplied from below; in a strictly limited 
sense, one could interpret this as representing a 
"steady state" (cf, however, footnote 19). 

3. Entropies. The results presented in Table III 
make it possible to calculate the entropy changes taking 
place during the relaxation. The entropy at any time / 
is taken to be 

S(t) = S e t rans(0 H- S trans(0 "T- S 'tnmsCO ~̂~ 

sHW(0 + sH°vib(o (D 
Evaluation of the translational contributions to the en­
tropy using the Sackur-Tetrode equation requires only 
a knowledge of the translational temperature, the vol­
ume and the number of particles of each kind, together 
with their respective masses. The number of He atoms 
is constant, and the numbers of H2 molecules and H 
atoms are readily obtained from the distribution func­
tions (cf. eq 6b); the instantaneous value of the tem­
perature follows from energy conservation, the energy 
going into vibration and dissociation being calculated 
directly from the distribution function, and the rota­
tional energy of the remaining H2 molecules being con­
sidered as classical at these temperatures. The rota­
tional entropy of the H2 molecules was calculated from 
the mean rotational partition function, which itself was 
derived from the equilibrium constant K and the exact 
values of all the other partition functions occurring in 
the equilibrium-constant expression. The vibrational 
entropy of the H2 molecules was assumed to be given 
under nonequilibrium conditions16'17 by the expression 

n-l 

SVib = - k £ Pi In Pi (2) 

where 
7 1 - 1 

Pt = ««7E n} (3) 

The evolution of the temperature and the individual en­
tropy terms during the reaction is illustrated in Table 
IV, and in the last column the evolution of the total en­
tropy of the system is shown as [S( °° ) — S(O]. It can 
be seen that the entropy increases monotonically with 
time, as required by the H theorem.19 Closer inspec­
tion reveals that this increase results mainly from the dif­
ference of two quite substantial terms, one an increase 
due to the increase in the number of particles and the 
other a decrease due to the cooling which accompanies 
dissociation; the overall increase is, however, guar­
anteed through the third law of thermodynamics. 

In linear thermodynamics, it can be shown that 
d2S/d?2 is negative near equilibrium,20 but its behavior 
in the nonlinear domain is not clear. Recently, how­
ever, it has been postulated by McKean21 that succes-

(16) W. Yourgrau, A. van der Merwe, and G. Raw, "Treatise on 
Irreversible and Statistical Thermophysics," The Macmillan Co., 
New York, N. Y., 1966. 

(17) We note in passing that elegant formulas can be written18 for 
the vibrational contribution to dS/dt and d'S/df in terms of the Wn, 
but they are very difficult to use because of catastrophic cancellation. 

(18) O. K. Rice, "Statistical Mechanics, Thermodynamics and Ki­
netics," W. H. Freeman & Co., San Francisco, Calif., 1967. 

(19) In a thermodynamic sense, therefore, at no time in the relaxation 
can one say that there is a "steady state," except when equilibrium is 
attained; a true "steady state" would only arise if the conservation 
condition were relaxed. 

(20) T. A. Bak, "Contributions to the Theory of Chemical Kinetics," 
W. A. Benjamin, Inc., New York, N. Y„ 1963. 

(21) H. P. McKean, Arch. Rail. Mech. Anal, 21, 343 (1966). 

sive d"S/d*n alternate in sign; the truth of this postulate 
is now established for the linear domain, and for certain 
idealized models in the nonlinear domain.22 We have 
taken our entropy data at 33 points between t = 0 and 
/ = co, and carried out a series of numerical differentia­
tions. We preset a limit of 20 successive differentia­
tions (because we did not feel there would be much sig­
nificance left in the numbers by then). The surprising 
result was that all 20 derivative:! were alternately either 
positive throughout, or negative throughout, all the way 
from t = 0 to t = co I I n fact, repeated differentiation 
appears to behave as a projection operator in the sense 
that the tenth derivative is strictly exponential23 in the 
range 0 < t < 1O-4 sec, and the 20th derivative is strictly 
exponential up to as far as 1O-2 sec! Thus, McKean's 
postulate is established for the master equation model of 
this system in this time range, since further derivatives 
must now alternate in sign. In the remainder of the ap­
proach to equilibrium, it seems reasonable to infer that 
after 20 successful differentiations, the postulate could 
easily be valid ad infinitum.** Perhaps the fact that 
under certain conditions the solutions of Volterra in­
tegral equations are completely monotonic25 is impor­
tant here, despite the fact that there is a very indirect 
connection between ?(0 and S(t). 

4. Rate Constants. Table V presents some rate co­
efficients derived from the data in Tables II and III, as a 
function of the time t, and the percentage reaction. 
The third and fourth columns give the upward and 
downward fluxes respectively between the discrete and 
the continuum states, i.e. 

Rd = M S k f t and J?,. = [M]£lF, -A (4) 

These fluxes become equal, as expected, when t -*• co. 
The fifth column contains the rate coefficient (/•) for 
the upward flux calculated from, the expression 

Rd = /-[M][H2] = r [ M ] 2 > (5) 
t'=0 

The rate coefficient (/•') for the downward flux is a 
constant, 8.361 X 10 -35 cm6 molecule-2 sec - 1 ; hence 
r( C0)Jr' = K; cf. ref 15. The sixth column of Table V 
gives the phenomenological rai:e constant /cd for the 
dissociation reaction derived from the phenomenological 
equation 

^ ^ = /cd[M][H2] - /C1[M][H]2 (6) 

(22) S. Harris, J. Math. Phys., 8, 2407 (1967). 
(23) It may easily be verified by examination of Table IV (which is a 

representative sample of the 33 points us3d) that the entropy function 
itself is not a pure exponential. We are a little wary of this projecting 
out of a pure exponential; it is conceivable that it could be a property 
of the differentiation algorithm (IBM Scientific Subroutine Package 
DDGT3; cf. F. B. Hilderbrand, "Introduction to Numerical Analysis," 
McGraw-Hill Book Co., Inc., New York, N. Y., 1965, pp 64-68), given 
a suitable function whose first few derivatives alternate in sign. 

(24) A little elaboration is appropriate here. Firstly, some care is 
necessary to eliminate "end effects" and also in avoiding overflow at 
small t, or underflow at large t. Secondly, after five differentiations, 
the "join" in the two solutions showed up as a step at 10~6 sec; the 
result described above was, therefore, only obtained by omitting points 
close to the join, and no points in the range 10~7 < t < 10"5 sec were 
actually included. One is reminded here of the physical chemist's 
"proor ' that all odd numbers are prime numbers; 1 is a prime number; 
so are 3, and 5, and 7. Nine? Well that's experimental error. Eleven 
is a prime number; so is 13. Now we have done enough experiments 
to prove it! 

(25) A. Friedman, J. Anal. Math., 11, 3 81 (1963). 
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Table II. Assumed Set of Probabilities (P1 j) per Collision for the Relaxation of H2 by He at 2000 0K".1 

v = 0 
V = 1 
v = 2 
v = 3 
c = 4 
v = 5 
v = 6 
V=I 
v = 8 
v = 9 
u = 10 
v = 11 
u = 12 
u = 13 
u = 14 
Pairs 

u = 0 

7.3 X 10"3 

1.9 X 10-« 
9.1 X IO-9 

3 X 1 0 " " 
9 X 10"» 
2 X 10"" 
5 X 10"" 
1 X IO-14 

2 X 10-1S 

1 X 10"" 
8 X 10-» 
2 X 10-» 
8 X 10-» 
5 X 1 0 - " 
9 X 10"» 

u = 1 

3.7 X 10-4 

1.5 X 10-2 

6.5 X 10-5 
4.7 X 10-s 

2 X 10-» 
2 X 10-13 
3 X IO"14 

4 X 1 0 " " 
2 X 10-» 
2 X 10-IB 

1 X 1 0 - " 
1 X l f r " 
1 X 10-16 
1 x 10-19 

2 X 1 0 - " 

v = 2 

5.6 X 10-8 
8.9 X 10- ' 

2.5 X 10-2 

1.6 X 10-« 
1.6 X 10-? 

9 X IO-11 
3 X IO-13 

9 X 10-14 

4 X IO"1 ' 
1 X IO-16 

5 X 10-16 
8 X 10-15 

4 X 10-» 
6 X 10-« 
9 X 10-29 

u = 3 

2 X IO-12 

2.7 X 10"' 
1.7 X 10-3 

3.7 X 10-2 

3.3 X 10-* 
4.3 X 10"' 

3 X 10-1° 
2 X IO-12 

1 X IO-13 

1 x 10-» 
7 X lO-i5 

1 X IO-14 

7 X IO-18 

1 X 10-1» 
2 X 10-28 

v = 4 

5 X 10-» 
2 X IO-11 

9.2 X 10-7 
3.1 X 10-3 

5.3 X 10-2 
6.4 X 10-4 

1.0 X 10-6 
9 X 10-w 
1 X IO-11 
2 X 10-15 
5 X lO-i* 
1 x 10-1« 
4 X 10-» 
5 X 10-is 
9 X 10-29 

v = 5 

1 X 10-2° 
7 X IO-15 

9 X IO-11 
2.6 X 10-6 
5.1 X 10-3 

7.3 X 10-2 
1.2 X 10-3 
2.4 X 10-6 
2.3 X 10-9 

3 X IO-11 
1 X IO-12 

2 X 10-15 
5 X 10-» 
4 X IO-19 

1 X 10-2' 

u = 6 

4 X IO-22 
8 X 10-» 
6 X 10-15 
4 X 10-i° 

7.1 X 10-6 
8.3 X 10-3 

9.7 X 10-2 
2.0 X 10-3 
4.8 X 10-6 
5.2 X IO"3 

4 X IO-11 
3 X 10-13 
1 X 10-» 
4 X IO"2" 
7 X IO-8 ' 

V = I 

1 X IO-22 
2 X 10-2» 
3 X IO"" 
4 X 10-i« 

1.5 X IO-' 
1.9 X IO-6 

1.3 X IO"2 

1.3 X lO-i 
3.2 X IO"' 
8.8 X 10-6 
9.4 X IO"9 

5 X IO-11 
2 X lO-i3 

9 X 10-» 
6 X IO-22 

0 The elements Wi j of eq 1(8), etc., are derived from these Pu by forming the product Wu = ZPn where Z is a collision number between 

which, if it can be assumed that the equilibrium constant 
for the reaction conforms to the rate-quotient law,8,16,26,2' 
becomes 

-d [H, ] 
6t 

= /cd[M][H2] - ^-1ZCa[M][H]2 (6a) 

Recasting in terms of the quantities available in Tables 
II and III, eq 6a has the form 

K - I 

[M] E [Winn, - Wntnt] = 
»=0 

It can be seen that after the initial period, k$ remains; 
constant to the number of figures given,28 and that it is 
indistinguishable from r, as would be expected from a 
comparison of eq 4, 5, and 6b, so long as the back-reac­
tion is unimportant. At later times, r is greater than kt 

as was foreseen by Widom.16 

However, the experimenter is not always in a positior. 
to use eq 6a in reducing his results. One common ap­
proach is to try to evaluate the "initial rate" by extra­
polation of the rate data back to zero time; this should 
lead to an evaluation of r == kd at these early times. Al­
ternatively, many workers use the integrated form of the 
rate equation. Here one has two choices, either to 
work at low percentage conversions and use a first-order 
rate law, or to use the full integrated form of the rate 
equation. The first-order rate law, which ignores the 
back-reaction, is 

-d[H2] 
dt 

= fcd[M][H2] (7) 

or in integral form 

kd* = r p ] - 1 In {aa/a, (8) 
where at = [H2]*. Comparison of the atom concen­
trations in Table HIb or Table V for values of Ioj» 

(26) H. O. Pritchard, / . Phys. Chem., 66, 2111 (1962). 
(27) O. K. Rice, ibid., 65, 1972 (1961); 67, 1733 (1963). 
(28) There is a small systematic change in kd as the reaction pro­

gresses. This can be regarded as the result of the time dependence cf 
one of the eigenvalues of the system; cf. Part I.s Alternatively, one 
could regard it as being the result of the fact that in writing iT"i[H]2 in 
eq 6a, one is assuming that these atoms were derived from hydrogei 
molecules having their equilibrium chemical potential, whereas this is 
not quite the case; cf. Tables III and IV. 

t — — 5, — 4, — 3, — 2, and —1 is striking confirmation 
of the validity of (8) up to about 20% reaction. The 
full integrated rate law, derived from (6a), is 

/Cd1 = / - W V l t a n h - 1 [—7] — 

tanh- 1 [- •7(1 + 4x,IK)l} (9) 

where xt == [H];, K is the equilibrium constant, and 
7 = {1 + I6a0/K}~1/2; an equivalent expression in 
logarithmic form is also available.29 The first-order 
intergrated rate constant kd

v and the correct integrated 
rate constant kd

l are more or less indistinguishable up to 
about 5 % reaction. 

5. Nearest Neighbor Transitions. It is quite clear 
from simple considerations10 that nonnearest neighbor 
transitions dominate the transient period, but soon be­
come quite unimportant as far as the vibrational part of 
the relaxation is concerned. On the other hand, it has 
been maintained30 that observed dissociation rates for 
some diatomic molecules cannot be explained without 
invoking nonnearest neighbor transitions. The two 
following calculations throw considerable light on the 
problem. First, we explored a nearest-neighbor-only 
model, in which all probabilities Wtj in Table II were 
put equal to zero except these for i = j =fc 1; this in­
volves a complete recalculation since the A matrix is 
changed through eq 1(18). It was found that in the very 
early stages of the vibrational relaxation, the evolution 
was retarded by comparison with the figures in Table 
111(a); nevertheless, long before the chemical reaction 
had begun, say in the period 10-"7—10-6 sec, the popula­
tion distribution arising from the nearest-neighbor-only 
model had become identical with that shown in Table 
III. However, at say 10_1 sec, the reaction had gone 
only to about 11 % instead of the 21 % shown in Table 
111(b); corresponding figures for 1 sec are 75% instead 
of 96%; thus with our W11, the reduction in rate is not 
as marked as suggested in ref 30. We then repeated the 
calculation with a restricted set of Wv where only 
nearest neighbor transitions were allowed below v = 10, 
but all transitions were allowed above v = 10. The 
principal effect here is to allow the parallel dissociation 
paths, and it was found that although the evolution was 

(29) Any table of integrals; see, e.g., "Handbook of Chemistry and 
Physics," The Chemical Rubber Co., Cleveland, Ohio. 

(30) W. G. Valance, E. W. Schlag, and J. P. Elwood, / . Chem. Phys., 
47, 3284 (1967). 
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v = 8 

5 X IO"23 

3 X IO"21 

1 X 1 0 - " 
5 X 1 0 - " 
2 X 10"1S 

5.9 X 10-» 
4 .3 X 10"' 
2.1 X 10~2 

1.6 X 10"» 
4.8 X 10~3 

1.4 X IO"5 

8.0 X 10-» 
2 X 10-1 1 

4 X 1 0 - " 
7 X 10"» 

v = 9 

1 X 10"» 
3 X IO"22 

1 X 10-» 
5 X 10"" 
5 X 10-» 
1 X 10"» 

2.0 X 10"8 

1.0 X 10~4 

3.1 X IO-2 

1.9 X 10"» 
6.4 X 10"' 
1.1 X 10-5 

3.5 X 10- ' 
5 X 10"13 

1 X 10"» 

v = 10 

2 X 10-26 

8 X 10~24 

7 X 10-2S 

1 X 10-20 

2 X IO"30 

3 X 10-16 

5 X 10"12 

6.3 X IO"8 

2.1 X 10-" 
4 .4 X 10-2 

2.2 X 10-1 

4.9 X IO"3 

5.3 X 10-« 
2 X IO"10 

2 X 10-1 2 

P = 11 

4 X IO"27 

1 X IO"25 

8 X 10~24 

2 X 10"21 

1 X 1 0 - " 
4 X 10"» 
1 X IO"14 

2 X IO"11 

1.8 X 10"' 
4.3 X 10-4 

6.3 X IO"2 

1.6 X 10"1 

3.5 X IO"3 

8.4 X IO"7 

2.5 X 10-8 

v = 12 

5 X 10-28 

4 X 10"2S 

5 X IO"23 

1 X 10-21 

1 X 10-2° 
3 X 10- 2° 
3 X 10"" 
3 X IO"14 

4 X 10"11 

2.7 X IO"7 

5.1 X IO"4 

5.8 X IO"2 

8.7 X 10"2 

1.8 X IO"3 

2.0 X IO"5 

B = 13 

8 X 10-28 

3 X 10-2« 
1 X 10-« 
3 X IO"25 

2 X IO-23 

3 X 10"22 

5 X 1 0 - " 
6 X 10-» 
4 X 10"14 

4 X IO"" 
2.6 X 10-' 
5.9 X 10-4 

4.1 X IO"2 

3.5 X 10-2 

3.5 X 10~B 

v = 14 

3 X 10-32 

1 x 10-29 

1 x 10-27 

3 X 10"2« 
2 X 10-25 

1 X IO"24 

1 x 10-24 

2 X 10-2" 
6 X 10-18 

4 X IO"15 

5 X IO"12 

9.1 X IO"3 

5.4 X 10-4 

2.2 X IO"2 

4.7 X 10-* 

Pairs 

5 X IO-39 

2 X 10-3s 
2 X IO"34 

4 X IO"33 

3 X IO-32 

4 X IO-30 

2 X 10~2S 

1 x 10-22 

9 X 1 0 " " 
7 X 1 0 - " 
6 X IO"11 

2.7 X 10"s 

5.9 X IO"3 

2.2 X IO"2 

4.6 X IO-2 

H3 and He. b Upper half = activation; lower half = deactivation. 

Table 111(a). Evolution of the Population Distribution Function ?,• = «</«,- as a Function of Time at 20000K, 
Calculated by Runge-Kutta Integration 

State i 

v = 0 
v = 1 
v = 2 
v = 3 
v = 4 
v = 5 
v = 6 
V = I 
v = 8 
D = 9 
v = 10 
v = 11 
v = 12 
D = 13 
v = 14 
Pairs 
Atoms 

— OD 

1.062039 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

- 1 0 

1.060078 
3.90 X 10-2 

1.57 X IO"3 

7.43 X 10-s 
4.05 X 10-» 
2.62 X 10-7 

1.99 X IO"8 

1.78 X 10"» 
1.9 X 1 0 - " 
2.2 X 10-1 1 

2.8 X 10- ' 2 

3.9 X IO-13 

3.8 X IO"14 

2.7 X 1 0 - " 
1.0 X 1 0 - " 
0.0 
0.0 

- 9 

1.045477 
0.324448 
0.103135 
3.55 X IO"2 

1.32 X IO-2 

5.39 X IO"3 

2.40 X IO"3 

1.15 X IO-3 

6.08 X IO"4 

3.34 X IO"4 

1.89 X IO-4 

1.10 X IO"4 

5.34 X 10"s 

1.71 X 10-= 
2.66 X 10-« 
5.5 X 10-2» 
7.4 X 1 0 - " 

-Log / 
- 8 

1.009843 
0.981438 
0.954830 
0.932349 
0.913381 
0.897887 
0.885184 
0.874535 
0.865454 
0.855908 
0.842240 
0.816009 
0.732204 
0.526852 
0.233981 
3.3 X 10-» 
5.74 X 10-» 

- 7 

1.008320 
1.008320 
1.008320 
1.008320 
1.008319 
1.008316 
1.008295 
1.008177 
1.007635 
1.005374 
0.997298 
0.973116 
0.880944 
0.641557 
0.289881 
2.7 X IO"14 

1.65 X IO"7 

, 
- 6 

1.008320 
1.008320 
1.008320 
1.008320 
1.008319 
1.008316 
1.008295 
1.008177 
1.007635 
1.005374 
0.997298 
0.973116 
0.880944 
0.641557 
0.289881 
3.1 X IO"12 

1.76 X IO"6 

again retarded for the first 1O-9 sec, for the remainder of 
the relaxation, the results were indistinguishable from 
those in Table III. Thus, we conclude that in future 
calculations, a judicious blend of nearest neighbor and 
nonnearest neighbor transitions could be used, particu­
larly at low temperatures where the vibrational and 
chemical parts of the relaxation are not strongly cou­
pled. While this would give some economy in the solu­
tion of the master equation itself, the principal effect 
would be to eliminate the need for calculating transition 
probabilities of multiple quantum jumps involving low-
lying states as a prerequisite to such a solution. 

B. Recombination 

1. The Model. The hypothetical experiment simu­
lated here is the reverse of that described above. It is 
imagined that a mixture consisting of 3.5 X 1016 mole-
cules/cc of H2 diluted in 3.5 X 1019 atoms/cc of He has 
been subjected to some process which instantaneously 
dissociates all the H2 molecules into ground-state H 
atoms. This instant is taken to be t = 0, and the trans-
lational temperature T0' is chosen so that when equilib­
rium is eventually attained, the final temperature will be 
20000K. Again, the process takes place at constant 
volume and at constant energy, and translational-rota-
tional equilibration is assumed to be very rapid; thus, 

each newly formed H2 molecule automatically contrib­
utes to the rotational energy and rotational entropy to 
an extent characteristic of the instantaneous transla-
tional temperature of the system. 

2. The Relaxation. The method of solution used 
was identical with that used for the dissociation calcula­
tion, i.e., Runge-Kutta integration out to 10~6 sec fol­
lowed by the iterative application of eq I(29a) at inter­
vals of A log t = 0.2. The initial distribution £(0) was 
taken to consist only of atoms, together with the appro­
priate number of pairs specified by eq 1(3), and the evo­
lution of | (0 , using the transition probabilities of Table 
II, is shown in Table VI. The changes in population 
are rather more complicated than in the dissociation 
case, and Table VI is divided into three sections: VI(a) 
shows the very early stages of the recombination; 
VI(b), the main body of the reaction; and VI(c), the 
final approach to equilibrium. 

One of the principal features of the relaxation is the 
appearance of a relatively well-defined bottleneck effect, 
although the actual position of the change from over to 
under population does not appear to be quite constant. 
Above this bottleneck, the levels are always grossly over-
populated, and not really in equilibrium with each 
other26 except in the very final (stages of the reaction. 
The lower levels are, of course, grossly underpopulated 

McElwain, Pritchard / Dissociation of Dilute Diatomic Gas 
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at the beginning of the relaxation, and it is not until 
about 1O-4 sec that any semblance of equilibrium ap­
pears among a series of neighboring levels; as time 
progresses, however, more and more of the lower levels 
come into equilibrium with each other. The upper 
levels (after their initial buildup) approach their equi­
librium populations monotonically from above, and the 
lower levels approach from below, just the converse of 
the dissociation case; however, there are a few levels in 
the middle, in the bottleneck region, which are subject 
to minor population alternation. 

3. Entropies. The behavior of the total entropy 
associated with the relaxation described in Table VI is 
shown in Table VII, calculated using eq 1-3. It is im­
mediately clear that in the recombination both the tem­
perature and entropy changes are much larger than they 
were in the dissociation (if both processes take place at 
around 2000 °K). In the recombination process, the loss 
in entropy due to the reduction in the total number of 
particles is more than offset by the accompanying in­
crease in temperature, and the total entropy rises mo­
notonically with time, as it must. In fact, the results 
again support McKean's complete monotonicity hy­
pothesis21 to the extent that the first 20 time derivatives 
of the entropy are alternately either positive throughout, 
or negative throughout.31 

It might be argued that this is surprising because of 
the approximation embodied in eq I(22a), i.e., that the 
transition probabilities Wtj do not change during the 
process. Even if the probabilities for deactivation were 
assumed to remain unchanged, we should really readjust 
the activation probabilities to obey detailed balancing 
at the current value of the translational temperature. 
However, it can readily be seen [e.g., eq 1(8)] that [M] 
and t are conjugate quantities. Hence, the population 
distribution functions £(t) of Tables VI and III would be 
equally appropriate to a scaled value of t if [M] were 
different, and it is quite easy to imagine an increase in 
the inert-gas concentration sufficient to make the ap­
proximation I(22a) reasonably acceptable. To a large 
extent, the same is true of the entropies in Tables VII 
and IV, but the scaling here is not quite linear, and it 
therefore seems slightly fortuitous that the entropy and 
all its derivatives turn out to be so well behaved. 

4. Rate Constants. Table VIII presents some rate 
coefficients derived from the data in Tables VI and II as 
a function of the time t. Column two of this table gives 
£o(0 as a measure of the extent of reaction, and the 
third and fourth columns give the upward and downward 
fluxes, respectively, calculated according to eq 4. They 
become equal, of course, as t -*- oo, but their most in­
teresting feature is that they never differ by more than a 
factor of about 2 once the initial transient period is com­
pleted. Moreover, in the early stages of the relaxation, 
these fluxes are enormous. As a consequence of this, 
while the rate coefficient (r') for the downward flux, 
calculated from 

Rr = r '[M][H]2 (10) 

remains constant at 8.361 X 1O-35 cm6 molecule-2 sec -1, 

(31) Unlike the dissociation case, probably because the entropy 
changes are larger, the " jo in" in the solutions at 1O-8 sec did not show 
up in these differentiations; consequently, it was not necessary to omit 
any of the 39 points to obtain this result. Like the dissociation case, 
however, we also observed the same curious projecting-out phenomenon. 
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Table IV. Temperature and Entropy as a Function of Time in the Dissociation of Hydrogen at 20000K" 

"*J trans (0 • H2-
L o g / 

— CO 

- 1 0 
- 9 
- 8 
- 7 
- 6 
- 5 
- 4 
- 3 
- 2 
- 1 . 4 
- 1 
- 0 . 8 
- 0 . 6 
- 0 . 4 
- 0 . 2 

0 
0.2 
0.4 
0.6 

T, 0K 

2000.5030 
2000.4956 
2000.4397 
2000.2955 
2000.2891 
2000.2891 
2000.2891 
2000.2891 
2000.2885 
2000.2828 
2000.2641 
2000.2272 
2000.1936 
2000.1468 
2000.0909 
2000.0405 
2000.0109 
2000.0014 
2000.0001 
2000.0000 

He 

85,343.3402 
85,343.3135 
85,343.1109 
85,342.5887 
85,342.5655 
85,342.5655 
85,342.5654 
85,342.5652 
85,342.5632 
85,342.5426 
85,342.4747 
85,342.3411 
85,342.2193 
85,342.0496 
85,341.8472 
85,341.6645 
85,341.5573 
85,341.5227 
85,341.5180 
85,341.5178 

H 

0.0 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0006 
0.0058 
0.0542 
0.2054 
0.4925 
0.7484 
1.0997 
1.5132 
1.8823 
2.0978 
2.1670 
2.1765 
2.1769 

H2 

113.7497 
113.7496 
113.7494 
113.7489 
113.7489 
113.7489 
113.7489 
113.7487 
113.7469 
113.7292 
113.6710 
113.5562 
113.4516 
113.3058 
113.1319 
112.9750 
112.8829 
112.8532 
112.8491 
112.8489 

SrOt(O 

16.9787 
16.9787 
16.9785 
16.9782 
16.9782 
16.9782 
16.9782 
16.9781 
16.9779 
16.9751 
16.9660 
16.9480 
16.9317 
16.9088 
16.8816 
16.8571 
16.8427 
16.8380 
16.8374 
16.8374 

SvIb(O 

0.0 
0.0652 
0.3955 
1.0037 
1.0270 
1.0270 
1.0270 
1.0270 
1.0270 
1.0268 
1.0263 
1.0252 
1.0242 
1.0228 
1.0212 
1.0197 
1.0189 
1.0186 
1.0185 
1.0185 

[SC-) - 5(0] 

0.33094 
0.29248 
0.16509 
0.08809 
0.07998 
0.07998 
0.07996 
0.07982 
0.07874 
0.07157 
0.05614 
0.03650 
0.02432 
0.01272 
0.00445 
8.26 X 10 - 4 

5.77 X 10-5 

8.90 X 10"' 
1.24 X 10-» 
1.45 X 1 0 - " 

° Entropies are in units of ergs deg-1 cm-3. 

Table V. Variation with Time of the Upward and Downward Fluxes, the Rate Coefficient, and the Phenomeaological 
Rate Constant for the Dissociation of Hydrogen at 20000K 

L o g / 

- 1 0 
- 9 
- 8 
- 7 
- 6 
- 5 
- 4 
- 3 
- 2 
- 1 . 4 
- 1 
- 0 . 8 
- 0 . 6 
- 0 . 4 
- 0 . 2 

0 
0.2 
0.4 
0.6 

% reaction 

7.4 X 10-13 

5.7 X 10"' 
1.65 X 10-6 

1.76 X 10~4 

2.15 X 10-3 

2.18 X 10"2 

2.18 X 10- ' 
2.18 
8.66 

21.4 
33.0 
49.2 
68.5 
85.9 
96.2 
99.5 
99.98 
99.9999 

10"14^d0 

8 X 10-» 
1.7 X 10-4 

4.220 
5.140 
5.140 
5.140 
5.140 
5.140 
5.142 
5.172 
5.345 
5.636 
6.250 
7.304 
8.553 
9.419 
9.719 
9.761 
9.763 

10-".fV 

5 X 10-» 
3 X IO"15 

2 X 10"13 

3 X 1 0 - " 
4.5 X 10- ' 
4 .6 X 10-' 
4 .6 X 10-5 
4.6 X 10-3 

7.3 X 10~2 

4.4 X 10-1 

1.065 
2.367 
4.589 
7.219 
9.040 
9.671 
9.759 
9.763 

10 2 V 

6.8 X 10"14 

1.4 X IO-4 

3.445 
4.196 
4.196 
4.196 
4.196 
4.196 
4.198 
4.225 
4.371 
4.613 
5.123 
5.996 
7.032 
7.751 
7.999 
8.034 
8.036 

1022/cd° 

6.8 X 10-» 
1.4 X 10"4 

3.445 
4.196 
4.196 
4.196 
4.196 
4.196 
4.196 
4.196 
4.196 
4.196 
4.196 
4.196 
4.196 
4.196 
4.196 
4.196 
4.196 

° Units of molecules cm-3 sec-1. b Units of cm3 molecule-1 sec-1. 

Table VI(a). Evolution of the Population Distribution Function £; = «,-/»,• as a Function of Time at 20000K, 
Calculated by Runge-Kutta Integration" 

-Log t-
State i 

B = O 
v = 1 
v = 2 
v = 3 
v = 4 
v = 5 
B = 6 
B = 7 
v = 8 
v = 9 
v = 10 
v = 11 
B = 12 
B = 13 
B = 14 
Pairs 
Atoms 

CO 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0 .0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.46 X 104 

1.21 X IO2 

- 1 0 

3.8 X 10 - 2 3 

1.4 X 10-19 

2.3 X 1O - " 
1.9 X 10-13 

8.2 X 1 0 - " 
1.97 X 10-8 

2.64 X 1O-6 

2.07 X IO"4 

9.23 X 10-3 

2.48 X 10-1 

4.11 
4.19 X 10 
3.96 X IO2 

1.41 X 10s 

2.95 X 103 

1.46 X 104 

1.21 X IO2 

- 9 

7.78 X 10-13 

3.73 X 10-10 

6.75 X 10"8 

5.66 X 10"6 

2.51 X 10-" 
6.20 X 10"3 

9.20 X 1O-2 

8.95 X 10"1 

5.97 
3.13 X 10 
1.31 X 102 

4.51 X 102 

1.72 X 103 

5.06 X 103 

1.00 X 104 

1.46 X 10* 
1.21 X 102 

- 8 

6.96 X 10-' 
1.00 X 10"» 
1.05 X 1O-4 

9.43 X 10-4 

7.81 X 10- s 

5.69 X 10-2 

3.66 X 1O-1 

2.07 
9.96 
4.29 X 10 
1.60 X 102 

5.12 X 102 

1.85 X 103 

5.34 X 10s 

1.04 X 104 

1.46 X 104 

1.21 X 102 

- 7 

1.99 X 10-s 
3.13 X 10"5 

1.29 X 10-4 

9.71 X 10-4 

7.84 X IO"3 

5.70 X IO"2 

3.66 X 10-•» 
2.07 
9.96 
4.29 X 10 
1.60 X 10:i 

5.12 X 10 ! 

1.85 X 10' 
5.34 X 10s 

1.04 X 10' 
1.46 X 10' 
1.21 X IO2 

- 6 

2.14 X IO-4 

2.25 X 1O-4 

3.23 X IO"4 

1.16 X 10- s 

8.03 X IO"3 

5.71 X IO"2 

3.67 X 10-> 
2.07 
9.96 
4.28 X 10 
1.60 X IO2 

5.12 X IO2 

1.85 X IO2 

5.33 X IO3 

1.04 X IO4 

1.46 X IO4 

1.21 X IO2 

" As was the case in the dissociation reaction, Table III, some of these values of {,- at very early times repiesent less than one molecule: 
these should be interpreted in the light of our comment in paper I that the master equation formulation implies that time and therefore the 
concentrations are continuous variables. 
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the rate coefficient (r) for the upward flux decreases by 
11 orders of magnitude during the relaxation. 

The fifth column of Table VIII lists the phenomeno-
logical rate constant kx for the recombination process, 
derived from the expression 

d[H2] 
At 

= /cr[M][H]2 - /cd[M][H2] (H) 

= /cr[M][H]2 - MT[M][H2] (Ha) 

invoking the rate-quotient law. Equation 11a can now 
be recast in terms of the quantities available in Tables 
VI and II to give 

[M]J^[W1nIin - WnM = 
»=0 

kt[M]i[2(nn + nln+1))Y - * X > A (lib) 

and it is found that, except during the transient period, 
kt remains constant throughout the process.32 

In experimental studies of recombination processes, 
it is again common33 to use the integrated form of the 
rate-constant expression. If one neglects the existence 
of the redissociation reaction, this is simply the second-
order rate law 

kr
s = r 1IM]-1J xr1 - X(T1J (12) 

The correct integrated rate constant is 

/c/ = .T1EM]-1Y{tanh-1
 [Y(2X0 + 1ItIQH ~ 

tanh-1[7(2x1 + V2AO]) (13) 

where K is the equilibrium constant and 

7 = [K(1IJC+ 2*o)} ~ , / ! 

In both (12) and (13), xt = [R],. The two integrated 
rate constants are more-or-less indistinguishable up to 
about 0.1 sec, or say 95% of the atoms recombined; 
this is a consequence of the fact that at 20000K the equi­
librium mixture contains relatively few atoms. 

There is, however, considerable difficulty in being sure 
what one is actually measuring in a recombination ex­
periment.20 Perusal of Tables VI(a) and VI(b) in the 
context of say the iodine-atom recombination experi­
ment33 will reveal the kind of ambiguities which could 
arise. We have investigated a number of conceivable 
fallacious "experiments" but have not found any case 
where the observed rate constant would differ apprecia­
bly from the correct value. However, we have pre-

(32) There is, in fact, a small time dependence of kr, which just shows 
up in Table VIII. This, however, is not due to the time dependence of 
the eigenvalues, which is a much smaller order effect, but is an artifact of 
the model. Equations 11 and l i b are not consistent with each other 
because of the appearance of the term nn in the latter. Equation l ib is 
consistent with our model in which we have a preliminary equilibrium 
between atoms and pairs, but it is only consistent with eq 11 and a 
constant k, if the local conservation condition 2(H„ + H(„+i)) = [H] is 
relaxed to 2H(„+I) = [H]. The idea of pairs was introduced originally8'10 

as an aid to calculating transition probabilities between the continuum 
and the discrete states, and they are also instructive in understanding the 
gross over-populations of the topmost levels in the recombination. 
However, they are unnecessary in the formulation of the relaxation 
equations, and we intend to reformulate our method without them in 
thefuture. It is, nevertheless, a moot point as to whether the true phe-
nomenological equation is (11) above, or whether it should include 
the effect of a preassociation before deactivation. 

(33) K. E. Russell and J. Simons, Proc. Roy. Soc. (London), A217, 
271(1953). 

Journal of the American Chemical Society / 91:27 / December 31, 1969 



7701 
Table VI(c). Evolution of the Population Distribution Function £,• 
Calculated by the Iterative Application of Eq I(29a) 

State i 

p = 0 
p = 1 
v = 2 
v = 3 
B = 4 
v = 5 
v = 6 
v = 7 
v = 8 
p = 9 
p = 10 
v = U 
v = 12 
p = 13 
p = 14 
Pairs 
Atoms 

-0.8 

0.973479 
0.973479 
0.973479 
0.973480 
0.973488 
0.973543 
0.973893 
0.975825 
0.984721 
1.021869 
1.154500 
1.551672 
3.065512 
6.997228 
12.773192 
17.534244 
4.187391 

-0.6 

0.985303 
0.985303 
0.985303 
0.985303 
0.985306 
0.985329 
0.985469 
0.986247 
0.989829 
1.004785 
1.058183 
1.218087 
1.827569 
3.410504 
5.735946 
7.652778 
2.766365 

-0.4 

0.992739 
0.992739 
0.992739 
0.992739 
0.992740 
0.992748 
0.992801 
0.993095 
0.994445 
1.000085 
1.020220 
1.080516 
1.310337 
1.907224 
2.784093 
3.506884 
1.872667 

Table VII. Temperature and Entropy as a Function of Time in the 

"O trans W ' 
Log? 

— CO 

-9 
-8 
-7 
-6 
-5 
-4 
-3.2 
-3 
-2.8 
-2.6 
-2.4 
-2.2 
-2 
-1.8 
-1.4 
-1 
-0.8 
-0.6 
-0.4 
-0.2 
0 
0.2 
0.4 
0.6 

T, °K 

1964.8391 
1964.8391 
1964.8392 
1964.8399 
1964.8467 
1964.9148 
1965.5813 
1969.0468 
1971.0636 
1973.7572 
1977.1010 
1980.9019 
1984.8257 
1988.5078 
1991.6756 
1996.1134 
1998.4303 
1999.0672 
1999.4831 
1999.7446 
1999.8976 
1999.9725 
1999.9965 
1999.9999 
2000.0000 

He 

85,212.9652 
85,212.9653 
85,212.9656 
85,212.9681 
85,212.9932 
85,213.2443 
85,215.7025 
85,228.4697 
85,235.8896 
85,245.7872 
85,258.0555 
85,271.9758 
85,286.3183 
85,299.7511 
85,311.2883 
85,327.4194 
85,335.8273 
85,338.1367 
85,339.6443 
85,340.5923 
85,341.1467 
85,341.4183 
85,341.5051 
85,341.5173 
85,341.5178 

H 

217.1910 
217.1910 
217.1906 
217.1866 
217.1467 
216.7486 
212.8484 
192.5105 
180.6250 
164.6899 
144.8000 
122.0255 
98.2949 
75.7746 
56.1450 
28.0573 
12.9132 
8.6370 
5.7975 
3.9828 
2.9063 
2.3734 
2.2020 
2.1778 
2.1769 

a Entropies are in units of ergs deg_I cm-3. 

sented sufficient numerical information in this paper for 
other model fallacious experiments to be investigated. 

5. Selective Population Experiments. It is possible 
to imagine a slight variation of the hypothetical recom­
bination experiment described in this paper, where in­
stead of an instantaneous dissociation, all the molecules 
are simultaneously loaded into one particular vibra­
tional level. Thus, at t = 0, £(0) consists only of one 
nonzero element, corresponding to the particular value 
of v. If v is above the bottleneck, say v = 12 or 13, it is 
found that after about 10~5 sec {(/) looks like the popu­
lation distribution for this value of t shown in Table 
VI(b). This is clearly consistent with the very high val­
ues of RA and RT exhibited in Table VIII. On the other 
hand, if v is below the bottleneck, say v = 3 or 4, the 
distribution after 10 - s sec is indistinguishable from that 
in Table III, because of the very rapid equilibration that 
takes place among the lower vibrational levels. How-

= mint as a Function of Time at 20000K, 

- Log t 
-0.2 

0.997088 
0.997088 
0.997088 
0.997088 
0.997088 
0.997091 
0.997109 
0.997205 
0.997648 
0.999499 
1.006108 
1.025899 
1.101333 
1.297249 
1.585062 
1.822304 
1.349927 

0 

0.999219 
0.999219 
0.999219 
0.999219 
0.999219 
0.999219 
0.999224 
0.999247 
0.999353 
0.999795 
1.001375 
1.006107 
1.024143 
1.070984 
1.139798 
1.196521 
1.093856 

0.2 

0.995900 
0.999900 
0.995900 
0.995900 
0.995900 
0.995900 
0.999900 
0.999903 
0.995916 
0.995971 
1.000164 
1.000745 
1.002.957 
1.008702 
1.017142 
1.024100 
1.011978 

0.4 

0.999996 
0.999996 
0.999996 
0.999996 
0.999996 
0.999996 
0.999996 
0.999996 
0.999996 
0.999998 
1.000006 
1.000027 
1.000110 
1.000324 
1.000639 
1.000899 
1.000449 

of Hydrogen Atoms at 2000 °Ktt 

H2 

0.0 
0.0001 
0.0004 
0.0035 
0.0330 
0.3059 
2.7705 
14.7127 
21.4334 
30.2730 
41.0945 
53.2462 
65.6636 
77.2214 
87.1037 
100.8651 
108.0163 
109.9783 
111.2585 
112.0633 
112.5339 
112.7644 
112.8381 
112.8485 
112.8489 

5,ot(0 

0.0 
0.0000 
0.0000 
0.0004 
0.0036 
0.0361 
0.3538 
2.0066 
2.9692 
4.2556 
5.8538 
7.6723 
9.5515 
11.3168 
12.8369 
14.9685 
16.0824 
16.3887 
16.5887 
16.7145 
16.7881 
16.8242 
16.8357 
16.8373 
16.8374 

SVibO) 

0.0 
O.COOO 
0.CO00 
0.0001 
0.CO03 
0.C022 
0.0216 
0.1220 
0.1804 
0.2584 
0.2553 
0.4654 
0.5791 
0.6857 
0."!77S 
0.5060 
0.5731 
0.5915 
1.0036 
1.0111 
1.0156 
1.0177 
1.0184 
1.0185 
1.0185 

IS(C)-SU)] 
44.2433 
44.2432 
44.2429 
44.2409 
44.2226 
44.0623 
42.7027 
36.5781 
33.3019 
29.1354 
24.2403 
19.0142 
13.9920 
9.6499 
6.2482 
2.1832 
0.5871 
0.2673 
0.1070 
0.0355 
8.91 X 10-s 

1.54 X 10-3 

1.59 X 10-" 
5.77 X 10-s 
3.15 X 10-8 

ever, if v is chosen to be near the bottleneck, a rapid 
equilibration is possible in both directions, and in our 
particular model, starting with all molecules in v = 10, 
it is found that after 10~s sec, the system looks like a 
dissociation that has been in progress for about 10~2 

sec. Thus, if and when such experiments become pos­
sible, there is a chance that anomalously fast relaxation 
rates may be found for some individual levels. 

C. The Rate-Quotient Law 

It is readily established from the values of kd and kr 

to be found in Tables V and VIII that once the initial 
transient is over (somewhere between 10-8 and 10-7 sec 
in this reaction at this temperature), the rate-quotient 
law is obeyed to the number of figures given. There 
are, as we have noted above, relatively insignificant 
time dependences in both rate constants, but these are 
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Table VIII. Variation of the Upward and Downward Fluxes, and 
of the Phenomenological Rate Constant for the Recombination o c 
Hydrogen Atoms at 20000K 

Log t VXUf) Ri" Rr' 1035W 

- 1 0 
- 9 
- 8 
- 7 
- 6 
- 5 
- 4 
- 3 . 2 
- 3 
- 2 . 8 
- 2 . 6 
- 2 . 4 
- 2 . 2 
- 2 
- 1 . 8 
- 1 . 4 
- 1 
- 0 . 8 
- 0 . 6 
- 0 . 4 
- 0 . 2 

0 
0.2 
0.4 
0.6 

3.8 X 10-" 
7.8 X 10-11 

6.96 X 10-6 

1.99 X 10~3 

2.14 X 1O-2 

2.15 X 10-1 

2.11 
11.9 
17.7 
25.3 
34.8 
45.6 
56.8 
67.3 
76.3 
88.9 

.5 

.3 

.5 

.2 

.7 

.9 
99.99 
99.9996 
100 

1.880 
6.541 

95. 
97. 
98. 
99. 
99. 
99. 

849 
849 
846 
820 
565 
319 
655 
836 
930 
048 

1.303 
7.569 
4.048 
9.599 
1.937 
8.675 
4.072 

141 
358 
067 
874 
767 

9.763 

X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 

433 
433 
433 
433 
433 

8 1.427 
1.374 
1.113 
9.743 
8.029 
6.133 
4.287 
2.727 
1.583 
8.465 
1.991 
3.953 
1.711 
7.471 
3.423 
1.779 
1.168 
9.998 
9.771 
9.763 

X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 
X 10 

.262 

.544 

.365 

.365 

.365 

.365 

.365 

.365 

.365 

.365 

.366 

.366 

.366 

.366 

.366 
4.366 
4.366 
4.366 
4.366 

7. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 
4. 

366 
366 
366 
366 
366 
366 

" Units of molecules cm - s sec-1. b Units of cm6 molecule-2 sec-1. 

far too small to yield a detectable difference between the 
rate constant ratio kd/kt and the equilibrium constant K. 

It can also be readily established by the application of 
eq 8 and 12 that the population distributions of Tables 
III and VI do not in general yield integrated rate con­
stants equal to the values listed in the final columns of 
Tables V and VIII, respectively. Once one has a series 
of parallel processes, there is no need for the integrated 
form of the rate constant to equal the differential form. 
This may most easily be understood if we restrict our­
selves to the consideration of a dissociation reaction in 
the region where eq 7 is valid. In detail, (7) becomes 

[M] E 1 WnJu = /c[M] Y1Hi (7a) 
»-0 i=0 

and in order to integrate this into (8), it is implicit that 
the summation on the left-hand side is separable. But 

E Wmn(<[T, W71A(Y nA (7b) 

is a well-known inequality,34 and so, in general, the in­
tegration cannot be performed. We are indebted to 
one of the referees (Professor O. K. Rice) for pointing 
out, however, that once the transient period is over (i.e., 
from 10~7 sec onwards) the n('s remain very closely pro­
portional to each other, and so the integration is possi­
ble on the basis of the figures presented in Table III. 
Hence, although the integrated and differential forms of 
kd (and kr) do, and should, differ wildly during the tran-

(34) G. H. Hardy, J. E. Littlewood, and G. Polya, 
Cambridge University Press, London, 1934. 

"Inequalities,' 

sient period, they ought to approach one another as time 
progresses. This has caused us to reexamine our con­
vergence criteria, and we have concluded that the in­
tegration step A log / = 0.2 is too coarse. Reduction 
of the step length to A log t = 0.02 causes a very small 
adjustment of the populations given in Table III: the 
values of kd remain unaffected, but kd

l behaves more 
acceptably, differing from kd by 10% at 10-7 sec but be­
coming indistinguishable from it beyond 10 -5 sec. It is 
clear, therefore, that integrated rate constants should be 
used with care at low percentage conversions, or under 
strong vibration-dissociation coupling conditions. The 
results of reducing the integration step length do not 
otherwise affect the numerical data presented in this 
paper to any significant extent, nor do they affect any of 
the conclusions. 

D. Conclusions 

The use of the iterative matrix technique of Rush and 
Pritchard,8 as developed in the preceding paper,3 has 
led to about a 106-fold expansion of the accessible time 
scale for a reaction such as this one. For the most part, 
this is due to the fact that the first term in eq 1(23) dom­
inates the solution, and that the nonlinear terms are in 
effect a relatively small perturbation. It is our belief 
that Tables III and VI represent acceptable solutions for 
the hypothetical experiments described in this paper, 
not only because of the tests of accuracy imposed,3 but 
also because of the internal consistency of the distribu­
tion functions and of the rate constant data, and the be­
havior of the entropy and its derivatives; there is not 
space to call attention to all these details, but a leisurely 
inspection of Tables III-VIII will reveal many of them. 

A complete calculation of the rate of dissociation or 
recombination of a molecule under highly dilute condi­
tions, and the temperature coefficients of those rates, 
requires a knowledge of a set of transition probabilities 
such as those in Table II, for each temperature under 
consideration. These probabilities are not known at 
this time, but, nevertheless we believe that on the basis 
of an intuitively reasonable set, we have come to a quali­
tative understanding of the dissociation process for a 
diatomic molecule, owing mainly to the fortunate cir­
cumstance that the qualitative behavior is relatively in­
sensitive to these probabilities35 and is in fact dominated 
by statistical-mechanical considerations. 

In future work it should be possible to make a reason­
able assessment of the various effects that have had to 
be neglected in this calculation, e.g., those associated 
with the inclusion of V-V transitions, with the explicit 
inclusion of rotational states, with the inclusion of 
bound MX levels, with an increase in the nuclear masses, 
etc., although it will still need some considerable de­
velopment of the techniques described here to achieve a 
complete description of the dissociation-recombination 
process. 

Dedication. It is a pleasure for us to dedicate this ac­
count of our work to the memory of the late Winston 
Danae Walters. 

(35) T. Carrington, / . Chem. Phys., 35, 807 (1961). 
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